0
Курс ЦБ на 12.10.2024
$96,07
€105,11

Firefly ROC-RK3576-PC 8GB/64GB

артикул ROC-RK3576-PC 8GB/64GB
Firefly
производитель
ROC-RK3576-PC Low-Power Large Model Mini Computer...
Datasheet PDF | 3 мб
По данному товару предложений не найдено. Оставьте заявку, и мы вам перезвоним.
Отправить запрос
Описание

ROC-RK3576-PC

Low-Power Large Model Mini Computer

Powered by the Rockchip RK3576, an octa-core 64-bit AIOT processor, ROC-RK3576-PC features a big.LITTLE architecture (4×A72 +4×A53) and an advanced lithography process to deliver high performance while maintaining low power consumption. It is equipped with an ARM Mali G52 MC3 GPU and a 6 TOPS NPU, supporting the private deployment of ultra-large parameter models under the Transformer architecture. It is compatible with various deep learning frameworks, custom operator development, and Docker container management technology. With an external watchdog, it ensures industrial-grade reliability, making it an excellent choice for AI applications requiring local deployment.

The private deployment of large models

Specifications

Specifications
Basic Specifications SOC

Rockchip RK3576

Octa-core 64-bit processor (4×A72 + 4×A53), up to 2.2GHz

GPU

G52 MC3 @ 1GHz, supporting OpenGL ES 1.1/2.0/3.2, OpenCL 2.0, Vulkan 1.1

Built-in high-performance 2D acceleration hardware

NPU

6 TOPS NPU, supporting INT4/8/16/FP16/BF16/TF32 mixed operations

VPU

Decoding: 8K@30fps/4K@120fps: H.265/HEVC, VP9, AVS2, AV1, 4K@60fps: H.264/AVC

Encoding: 4K@60fps: H.265/HEVC, H.264/AVC

RAM

LPDDR4/LPDDR4x (4GB/8GB optional)

Storage

eMMC (16GB/32GB/64GB/128GB/256GB optional), UFS2.0 (optional)

Storage
Expansion

1 * M.2 (2242 PCIe NVMe/SATA SSD expansion ), 1 * TF card slot

Power

DC 12V (5.5mm * 2.1mm, 12V~24V wide input voltage)

OS

Android14, Linux OS, and Buildroot+QT

Software
Support

・ The private deployment of ultra-large-scale parameter models under the

Transformer architecture, such as Gemma-2B, LlaMa2-7B, ChatGLM3-6B, Qwen1.5-1.8B, and more.

・ Traditional network architectures such as CNN, RNN, and LSTM;

a variety of deep learning frameworks include TensorFlow, PyTorch, MXNet, PaddlePaddle, ONNX and Darknet.

・ Custom operator development.

・ Docker container management technology.

Power
Consumption

Normal: 1.2W(12V/100mA),Max: 6W(12V/500mA),Min: 0.096W(12V/8mA)

Dimension

93.00mm * 60.15mm * 12.49mm

Weight

≈50g

Environment

Operating temperature: -20℃- 60℃

Storage humidity: 10%~90%RH (non-condensing)

Interfaces Network

1 * Gigabit Ethernet (1000 Mbps / RJ45), 2.4GHz/5GHz dual-band WiFi (802.11a/b/g/n/ac), Bluetooth 5.0

Video Input

1 * MIPI CSI DPHY (30Pin-0.5mm, 1*4 lanes/2*2 lanes)

Video Output

1 * HDMI2.1(4K@120fps)、1 * DP1.4 (4K@120fps)、

1 * MIPI DSI DPHY(2560*1600@60fps,30Pin-0.5mm, 1*4 lanes)

Watchdog

External watchdog

USB

1 * USB3.0、1 * USB2.0

Expansion
Interface

1 * Type-C (OTG/DP1.4), 1 * FAN (4Pin-1.25mm), 1 * Debug (3Pin-2mm),

1 * 3.5mm Audio jack (supporting MIC recording, CTIA standard), 1 * MIC (2Pin-1.25mm)

1 * double-row pin header (20Pin-2.0mm): USB 2.0, I2C, SPI, SARADC, UART, and LineOut

Вы находитесь на новой версии нашего сайта.
Чтобы воспользоваться старой, перейдите по ссылке:
old.e-streloy.ru